姓名
刘静欣
性别
男
最高学位
博士
职称/职务
教授
研究方向
功能有机材料,超分子化学和配位化学
邮箱
jxliu411@ahut.edu.cn
学习工作经历
2011.1-至今 安徽工业大学bat365官网登录入口教授
2013.4-2014.5 美国迈阿密大学公派访问学者
2010.4-2013.1南京大学生命科学院博士后
2007.9-2010.12安徽工业大学bat365官网登录入口副教授
2004.7-2007.6厦门大学化学系博士
2001.9-2004.6贵州大学应用化学研究所硕士
主要科研项目及成果
主持国家自然科学基金面上项目:新型瓜环的合成及其对阴离子识别的应用(No.: 20971002)
主持国家自然科学基金面上项目:烷基链衍生物在瓜环基疏水空腔中的构象与应用(No.: 21371004)
主持中国博士后科学基金面上项目:瓜环疏水空腔中的分子构象(No.: 20100481109)
主持安徽省自然科学基金面上项目:具有纳米孔洞结构的瓜环基超分子结构的可控组装与性能研究(No.: 2008085MB36)
主持安徽省高等学校科学研究重大项目: 瓜环基光致变色材料的合成、性质和应用研究(No.: 2023AH040150)
一作或通讯身份发表SCI论文90多篇,论文被引用2000多篇次。
近十年代表论文:
1. Chameleon-inspired supramolecular materials based on cucurbit[7]uril and viologens exhibiting full-color tunable photochromic behavior, Chem. Eng. J. 2024, 484, 149551.
2. Acid−base regulated inclusion complexes of β-cyclodextrin with 1-[2-(4-fluorophenyl)-2-oxoethyl]-4,4’-bipyridinium dichloride displaying multistimuli-responsive chromic behavior and photomodulable fluorescence, J. Mater. Chem. C. 2024, 12, 2764–2771.
3. A Supramolecular Host-Guest Hydrogel Based on g-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence, ACS Appl. Mater. Interfaces. 2023, 15, 2479–2485.
4. Stimuli-Responsive Mechanically Interlocked Molecules Constructed from Cucurbit[n]uril Homologues and Derivatives, Chem. Soc. Rev. 2023, 52, 1428–1455.
5. Chaotropic Effect Driven Selective Anion Recognition: Exo-Binding of Cyclohexanocucurbit[5,6]uril with Hexafluorophosphate, Cryst. Growth Des. 2023, 23, 6909–6915.
6. Supramolecular inclusion complexes of b-cyclodextrin with bathochromic-shifted photochromism and photomodulable fluorescence enable multiple applications, Mater. Adv. 2023, 4, 5215–5223.
7. Supramolecular Inclusion Complexes Based on Cucurbit[7]uril and Triazine-Bridged Viologens Displaying Near-infrared Photochromism and Photomodulable Fluorescence, ACS Appl. Opt. Mater. 2023, 1, 1811–1818.
8. Inclusion Complexes of Cyclodextrins with 1-(4-Carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium Chloride: Photochromism, Erasable Inkless Printing and Color Tuning, J. Phys. Chem. C 2022, 126, 18900–18906.
9. An Inclusion Complex of Cucurbit[7]uril with Benzimidazolyl Benzyl Viologen Showing Fluorescence and Photochromic Properties, Phys. Chem. Chem. Phys. 2022, 24, 25930–25936.
10. Solid-State Supramolecular Inclusion Complexes of b-Cyclodextrin with Carboxyphenyl Viologens Showing Photochromic Properties, J. Phys. Chem. C 2022, 126, 844–850.
11. Encapsulation of L-Valine, D-Leucine, and D-Methionine by Cucurbit[8]uril, CrystEngComm 2022, 24, 1035–1040.
12. Light-responsive molecular switch based on cucurbit[7]uril and 1,1'-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium dibromide displaying aggregation emission, Org. Biomol. Chem. 2022, 20, 1253–1259.
13. Controllable synthesis of dodecamethylcucurbit[6]uril and its application in separating phenylenediamine isomers, Cryst. Growth Des. 2021, 21, 2993–2999.
14. Supramolecular frameworks constructed by exclusion complexes of symmetric dicyclohexanocucurbit[6]uril with benzene ring-containing guests, Cryst. Growth Des. 2021, 21, 2977–2985.
15. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding, Chin. Chem. Lett. 2021, 32, 2301–2304.
16. Detecting Pesticide Dodine by Displacement of Fluorescent Acridine from Cucurbit[10]uril Macrocycle, J. Agric. Food Chem. 2021, 69, 584–591.
17. Supramolecular Chemistry of Substituted Cucurbit[n]urils, Inorg. Chem. Front. 2020, 7, 3217–3246.
18. Selective Recovery and Detection of Gold with Cucurbit[n = 5–7]urils, Inorg. Chem. 2020, 59, 3850–3855.
19. Symmetrical-tetramethyl-cucurbit[6]uril-driven movement of cucurbit[7]uril gives rise to heterowheel [4]pseudorotaxanes, J. Org. Chem. 2020, 85, 3568–3575.
20. Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine, Anal. Chim. Acta 2020, 1104, 164–171.
21. Outer surface interaction to drive cucurbit[8]uril-based supramolecular frameworks: possible application in gold recovery, Chem. Comm. 2019, 55, 14271–14274.
22. Lanthanide contraction effect and organic additive impact the coordination structures of lanthanide ions with symmetrical octamethyl-substituted cucurbit[6]uril ligand, CrystEngComm 2019, 21, 5641–5649.
23. Multiple noncovalent interactions constructed polymeric supramolecular crystals: recognition of butyl viologen by para-dicyclohexano cucurbit[6]uril and α,α’,δ,δ’-tetramethyl -cucurbit[6]uril, Org. Chem. Front. 2017, 4, 2422–2427.
24. Endo/exo binding of alkyl and aryl diammonium ions by cyclopentanocucurbit[6]uril, Org. Chem. Front. 2017, 4, 1799–1805.
25. Supramolecular complexes of α,α’,δ,δ’-tetramethyl -cucurbit[6]uril binding with enantiomeric amino acids, CrystEngComm 2017, 19, 2168–2171.
26. Host-guest complexation of cucurbit[8]uril with two enantiomers, Sci. Rep. 2017, 7, 44717.
27. Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril, Chem. Comm. 2016, 52, 2589−2592.
28. Host−guest complexation of di-cyclohexano-cucurbit[6]uril and hexa-cyclohexano -cucurbit[6]uril with alkyldiammonium ions: A comparative study. Org. Biomol. Chem. 2016, 14, 674−679.
29. Aniline-containing guests recognized by α,α’,δ,δ’- tetramethyl -cucurbit[6]uril host, Sci. Rep. 2016, 6, 39057.
30. The Binding Interactions between Cyclohexano-cucurbit[6]uril and Alkyl Viologens Give Rise to a Range of Diverse Structures in the Solid and the Solution Phases, J. Org. Chem. 2015, 80, 10505−10511.
31. Encapsulation of haloalkane 1-(3-Chlorophenyl)-4 -(3-chloropropyl)-piperazinium in symmetrical α,α’,δ,δ’-tetramethyl-cucurbit[6]uril, Phys. Chem. Chem. Phys. 2015, 17, 8618–8621.
32. Mixed behavior of p-phenylenediaminium guest binding with inverted cucurbit[6]uril host, Org. Biomol. Chem. 2015, 13, 8330–8334.
33. Extended and contorted conformations of alkanediammonium ions in symmetrical α,α’,δ,δ’-tetramethyl-cucurbit[6]uril cavity, J. Org. Chem. 2014, 79, 11194–11198.
34. Coordination of Ln3+ in ortho-tetramethyl -substituted cucurbituril supramolecular assemblies formed in the presence of nitrate cadmium: potential applications for isolation of heavier lanthanides, CrystEngComm 2014, 16, 10674–10680.